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The structure and statistics of language
jointly shape cross-frequency neural
dynamics during spoken language
comprehension

Hugo Weissbart 1,2 & Andrea E. Martin 1,2

Humans excel at extracting structurally-determined meaning from speech
despite inherent physical variability. This study explores the brain’s ability to
predict and understand spoken language robustly. It investigates the rela-
tionship between structural and statistical language knowledge in brain
dynamics, focusing on phase and amplitude modulation. Using syntactic fea-
tures from constituent hierarchies and surface statistics from a transformer
model as predictors of forward encoding models, we reconstructed cross-
frequency neural dynamics from MEG data during audiobook listening. Our
findings challenge a strict separation of linguistic structure and statistics in the
brain, with both aiding neural signal reconstruction. Syntactic features have a
more temporally spread impact, and both word entropy and the number of
closing syntactic constituents are linked to the phase-amplitude coupling of
neural dynamics, implying a role in temporal prediction and cortical oscillation
alignment during speech processing. Our results indicate that structured and
statistical information jointly shape neural dynamics during spoken language
comprehension and suggest an integration process via a cross-frequency
coupling mechanism.

Humans comprehend language despite high variability in the physi-
cality of speech acoustics, which can stem fromnoisy environments or
from variations in speakers and their accents. Such robustness in
perception may stem from the projection of stored linguistic knowl-
edge via the anticipatory mechanisms of predictive processing. Pre-
dictive processing is a widespread neurocomputational principle, or
more generally, a framework inwhich predictions play an active role in
the processing of upcoming information streams in the brain1. The
incoming information may be sensory or solely endogenous neuronal
activity from other brain regions, and the output of such processes
may be perceptual, motor, or cognitive2–5. Although this framework
originates from the field of perception6, evidence of such processing
during language comprehension is also abundant7–12.

Although language comprehension is remarkably adaptable to
variation in speech acoustics, the inherent unpredictability of novel
messages-each encoding the intended meaning from the speaker-
poses a challenge. This unpredictability is not absolute but relates to
the relevance and specificity of each message, which often contains
sequences and structures that are nevertheless anticipated based on
knowledge from previous linguistic experience. There are different
levels of granularity, each benefiting from prediction from other
representations, such as phonemes predicted from preceding items
and spectro-temporal characteristics of the sound segment13,14. Fur-
thermore, an essential feature of human language is its display of
nested syntactic structures over which meanings are computed15,16.
Traditionally, language’s inherent unboundedness and generative
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aspect have often been seen as being in putative opposition to dis-
tributional and statistical accounts of language processing (e.g., the
traditional view on the competence hypothesis17; or grammar-free
account of comprehension18,19). In contrast to this dichotomy, in the
present study, we synthesise these positions and present a framework
wherein the syntactic structure and statistical cues are jointly pro-
cessed during comprehension20–22.We build upon thework of Brennan
et al.23 who demonstrated the sensitivity of the BOLD signal to both
structure and surprisal but focused on the localisation of such effect.
Moreover, their study, while also investigating naturalistic speech
comprehension, could not analyse the temporal dynamics or high
frequency activity due to the poor temporal resolution of the BOLD
signal. In the present study, we can leverage the use of magne-
toencephalography (MEG) to investigate phase and amplitude
dynamics of band-limited cortical activity in response to variation in
both statistical cues and syntactic features.

To operationalise syntactic processing, we constructed a set of
word-level features which describe critical characteristics of the
underlying constituency parse or tree structure. Those syntactic
features are derived fromhierarchical trees operating at the sentence
level and are de-lexicalised. They represent aspects of syntactic trees
(viz., number of brackets, depth in the tree) which by themselves can
elicit a response reflecting tracking of syntactic structures as in Ding
et al. and Frank and Yang24,25. Similar syntactic metrics have been
used to study the effect of syntactic operations such as unification
(the “merge" operation in the minimalist program15,26) or integration
of an item into a larger structure and the depth, a proxy for ongoing
complexity, of the syntactic tree at a given word27,28. These metrics
align with foundational linguistic theories and have been shown to
elicit predictable neural responses16,23,29,30. Since those features are
derived from the constituency parse, we refer to them as rule-based
features, in contrast to surface statistical features, which are esti-
mated from sequences of words with no information beyond the
sequence itself25,31. However, this does not necessarily imply that
such statistics will not carry any information about hierarchical
structures or about syntax, a topic that is currently under debate32–34.
What is indisputable, however, is that such statistical metrics are
built from a sequence of words and optimised to learn a probability
distribution conditioned on the sequence context of preceding
words. To learn this distribution, words are presented to a system,
such as a recurrent neural network, and the system’s task is to predict
the next word based on the series of preceding words encountered
so far (this memory is embedded in the model’s architecture). Non-
linear models, like Long Short-Term Memory network or Transfor-
mers, can manipulate information such that they could potentially
encode structured information within their memory (hidden states,
latent representations). From an information-theoretic perspective,
surface statistics can give an estimate of the self-information (viz.,
surprisal) and uncertainty (viz., entropy) measured at the word level
while conditioning on the observed context of previous words.
Importantly we note that these models, despite their increasingly
complex architecture, do not have rule-based knowledge (structu-
rally-)embedded in their learning algorithm and solely make pre-
dictions from an estimate of the conditional probability distribution
over the vocabulary that is updated through their inner (recurrent)
dynamics. However, we note that recentmodels, such as larger GPTx,
appear to perform better on a series of syntactic paradigms32,33

compared to older architectures that were trained jointly with
grammatical rules and structural information along with the word
sequence (such as RNNG, Grammatical recurrent neural network; but
see refs. 28,35,36). Finally, we note that such statistical cues have
been shown to modulate cortical activity during language
comprehension27,37–39.

In light of this apparent dichotomy, and in the context of the
debate in cognitive science regarding the role of statistical information

in language processing17,31,40,41, we then ask to what extent do their
individual contributions explain neuroimaging data, is the whole bet-
ter than the sum of its parts? We hypothesise that they jointly con-
tribute to explaining variance in the MEG data while presenting
overlapping spatio-temporal sources. Moreover, the dynamics might
disentangle them further as predictions and statistical inference seem
to be a widespread phenomenon in cortical computation, while the
organisation of linguistic units into nested hierarchical structures, at
least at first blush, may be related to hierarchical processing in other
domains in someways, but not others42–44.We thus further hypothesise
that brain responses to statistical and structural features are operated
synchronously, with potential distinct time scales, and orchestrated
through cross-frequency coupling. Differentiation arises as informa-
tion flows from one system of prediction to, potentially, another,
which would compute different combinatorial aspects of structure
building and semantic processing.

To tap into the orchestration of spatio-temporal dynamics
through cross-frequency coupling, we measured brain activity with
magnetoencephalography (MEG), allowing for a time-resolved
recording of neural activity. The temporal resolution of MEG data is
fine enough to measure power modulation in a wide range of (high)
frequencies together with the phase of a slower frequency range. The
role of cortical oscillations in neural computation is still unclear;
nonetheless, an increasing number of studies have now attributed
some functional role to different frequency bands, not only for low-
level perceptual or sensory processing but also in relation to speech
processing. Delta and theta-band activity (1-4 Hz and 4–8Hz respec-
tively) play an important role in the neural tracking of the acoustic
envelope9,45. It has been hypothesised that low-frequency cortical
activity rhythmically modulates neuronal excitability to match the
rhythm and landmarks of the acoustic stream, perhaps reflecting
speech segmentation mechanism46–48 but also facilitating the proces-
sing of syntactic information via synchronisation to lower level
acoustic cues2,16,49,50. Moreover, studies have demonstrated how low-
frequency neural signals couple their phase with power of higher fre-
quency broadband power (phase-amplitude coupling, PAC thereafter)
and such coupling has an impact on behavioural response51,52. It has
also been proposed that the ongoing phase of neural signals may be
modulated by the predictability of words, thus affecting the temporal
prediction of syllable andword onset48,53. The phase of neural signals is
a candidate for carrying information both about statistical and struc-
tural features53–56. However, it is still widely debatedwhethermeasured
oscillatory activity in response to speech stimulus truly comes from an
oscillatory mechanism or is a by-product of measuring a response to a
(pseudo-)rhythmic stimulus, that is, a series of evoked responses. The
interpretation of the role, cause and effect, of low-frequency oscilla-
tions remains unclear. While some studies claim that there is evidence
that neural tracking to speech envelope is solely due to evoked
response convolved with acoustic edges47,57, other studies find evi-
dence consistent with an entrained endogenous oscillator which
shows sustained activity and phase-related behaviouralmodulation8,10.
We adopt a more agnostic view, focusing on measured phenomena,
where we investigate how linguistic features influence neural activity
across different frequency bands, by analysing phase consistency,
power modulation and PAC. While we prefer to refer to low- and high-
frequency activity specifically, wemay use the term cortical oscillations
to refer to band-limited power elevation observed in the MEG power
spectra without making any claim about the underlying mechanism.

Our hypothesis draws on the intersection of syntactic processing
and predictive coding theories, positing that the brain’s response to
language is not just reactive but anticipatory, integrating both struc-
tural and statistical cues in real-time. We thus propose to link prop-
erties of syntactic structures, jointly with information-theoretic
metrics to MEG data. Brennan & Pylkkänen58 and Nelson et al.27 have
used a similar approach to link syntactic features to
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electrophysiological data. However, the former studies focused on the
localisation ofMEG activity to study word-evoked responses, while the
latter analysed high gamma activity recorded from intracranial elec-
trodes. In another study, Brennan & Hale20 used information theoretic
metrics built from context-free grammar parsers and delexicalised n-
grams,which donot capture semantic information (thus their surprisal
metric greatly differs from ours). Finally, in Brennan et al. (2016)23, a
link is made between hierarchical syntactic features (node count) and
surprisal fromMarkovmodels (n-grams, lexicalised and unlexicalised).
While they elegantly show how different parsing strategies affect the
prediction of neural activity, the statistics of word predictions are
overlooked. Modern autoregressive language models produce a more
precise estimate of conditional probabilities, from which we extract
surprisal and also entropy, thus allowing for a better account of pre-
dictive mechanisms. To our knowledge, the current literature has not
explored the interplay of such features across frequency bands
with MEG.

Finally, we investigate the relation of word level computation at
different timescales, following the work from Donhauser & Baillet59.
Indeed, they observeddistinct roles for theta anddelta rhythmsduring
the prediction of phoneme sequences. The authors intepreted effects
in theta as a read-out of the sensory sampling mechanism bound to
maximize the expected information gain, and their delta effect as
encoding non-redundant, i.e. novel, information deviating from
internally generated predictions, which results in an update of the
internal model60. Top-down predictions, but also updates, have been
already linked to beta powermodulation61. All in all, this mechanism, if
supported via delta-phase, is bound to endogenously generated pre-
dictions and thus to the internalmodel of the listener. Thus, in linewith
Donhauser & Baillet59, we expect a stronger delta-beta coupling for
non-redundant information, which is approximated by the surprisal
feature of the statistical features.

In the present study, we ask whether syntactic and statistical
word-level features provide complementary cues to the processing of
speech input by investigating how putative cortical oscillations and
broadband activity are distinctively modulated by linguistic features.
The aim is to discuss how different frequency bands orchestrate the
processing of linguistic units. Those units are favoured differently,
whether from predictions on sequential statistics, a potentially
domain-general feat, or mirror integration into larger linguistic com-
pounds, thus reflecting language-specialised computations. Specifi-
cally, weexaminehow syntactic and statistical features influencephase
consistency, power, and phase-amplitude coupling. The Results sec-
tion will detail our findings on how the brain responds to these lin-
guistic cues, highlighting the separate and combined effects of
structural and statistical information on neural processing. Through
our analyses, we aim to shed light on the mechanisms underlying
predictive coding in language comprehension, offering insights into
the neural basis of language processing.

Results
In order to measure time-resolved cross-frequency coupling in rela-
tionship to different linguistic features we first analyse both the pre-
sence of word-related phase and power modulation as well as how
speech representations perform in predicting MEG signals. First, we
extracted linguistic features reflecting both syntactic complexity and
statistical properties of speech from the presented stimuli. So called
rule-based features are derived fromconstituency tree,while statistical
features are generated using the probability distribution of next word
predictions from a large language model. These features include syn-
tactic depth and thenumber of closingbrackets to represent structural
properties of syntax29,58, and word surprisal and entropy for statistics
of word-level predictions27,38. We construct Temporal Response
Function (TRF)models to predictMEG signals basedon these linguistic
features, enabling a precise examination of how each feature

influences neural responses over time. The analysis pipeline (detailed
in the Methods section) involves aligning the MEG data with our lin-
guistic features, then using ridge regression to estimate the TRF
coefficients, and finally evaluating the models’ performance through
correlation analysis between predicted and observed neural activities.
In most cases, model comparison is carried out between the true
model and a null model for which values (but not timing) of a given
feature (or of a feature set) are shuffled. Through this method, we aim
to reveal the mechanisms by which the brain integrates and processes
linguistic information at different levels. The general analysis pipeline,
along with stimulus representations and analysis methods, are pre-
sented in the diagram of Fig. 1.

We measured power spectral density (PSD) of the MEG data in
order to assess the quality of the data and the presence of neural
oscillations. As seen in Fig. 2a, b, the MEG data presents neural oscil-
lations in the alpha and beta bands. We found a marginally significant
difference in power between the French and Dutch listening condi-
tions in the beta band (FDR corrected for multiple comparison across
all frequencies, corrected p-value = 0.06, one sampled t-test, dof = 24).
We then computed the cerebro-acoustic coherence by taking the
magnitude coherence squared between the sensor-level MEG signals
and the sound envelope of the stimuli, see Fig. 2c. This reveals
coherent phase alignment between sound amplitude and MEG signals
in the delta and theta bands. Importantly, while those reflect proces-
sing of speech-like sounds they do not directly reflect comprehension
as it occurs for both French and Dutch listening conditions. Besides, it
is actually significantly greater for the French condition in the delta
and theta-band (p = 0.01, cluster-based permutation test using one
sample t-test as statistic). Finally, we computed a time-frequency
representation for every word-epochs to analyse phase consistency
and power modulation at higher frequencies. We extracted power
modulation and inter-word phase clustering from the complex Fourier
coefficients. As seen in Fig. 2d, e, we observe power modulation in the
beta band, and inter-wordphase clustering in the delta and theta band.

Phase consistency and power modulation at word onsets
Recent studies have demonstrated the important role of low-
frequency cortical activity during speech processing. Whether it is a
form of neural entrainment to the acoustic envelope or a series of
evoked responses to acoustic edges is debated, but results come
together in that they show a stronger correlation between speech
spectro-temporal features and MEG or EEG signals in both the delta
and theta band7,45,54. Etard & Reichenbach62, for instance, concluded
from their study the existence of a dissociable account for each fre-
quency bandwith respect to the clarity and intelligibility of the speech
signal.Modellingwork fromHyafil et al.48 reinforces the idea of a phase
alignment within the theta band to promote segmentation of syllabic
sequences. Altogether, we hypothesised change in phase consistency
in delta and theta range after word onset, potentially coupled with
modulation of beta oscillatory activity and with gamma broadband
activity (which has already been suggested51,52,56). To further validate
this choice of frequency bands of interest, we computed word-
triggeredphase consistency andpowermodulation. Fig. 2 presents the
long-term power spectral density across all stories (panel a) as well as
power modulation and inter-trial phase consistency happening after
word onsets (panels d,e). We found significant power modulation in
the beta bands and significant inter-word phase consistency in the
delta and theta bands (cluster-based permutation using one sample t-
tests as cluster statistics after baseline removal, tested against a null
hypothesis of zero-valued population mean). One challenging aspect
in computing the inter-trial phase consistency (ITPC, or inter-event
phase clustering and in the case of the present study: inter-word phase
clustering) is that it relies on the clustering of phase, evidently, across
trials (defined byword onset timings).Hence, it depends on trial-based
experimental design. We propose an innovative approach to
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circumvent trial design and leverage the use of naturalistic stimuli by
adapting the forward linear model to compute an equivalent of ITPC
(and PAC, shown later on) for continuousM/EEG recordings.We could
indeed reproduce those results of word-related modulation by com-
puting a TRF model with word onset only on band limited data (in
Fig. 3a, b). Again a cluster-basedpermutation test revealed a significant
difference against baseline (taken as the average signal for negative
lags up to -50ms). We further investigated the peak times of the
evoked activity contributing to the phase clustering in the low-
frequency cortical activity (inset topographies in Fig. 3a). This suggests
a fronto-temporal wave propagating from posterior to anterior

sensors in the delta-band and in the opposite direction for the theta-
band, such low-frequency travelling waves have been recently pro-
posed as amechanism for temporal binding and integration63 aswell as
for encoding structural information56.

These preliminary results indicate the presence of modulation in
the canonical frequencybands, thus validating our choice of frequency
bands for further analysis. Note that given the report of theta-gamma
coupling in the literature for speech processing46,48,55, we are adding
the gamma band to subsequent analysis. We then proceeded to
investigate the influence of linguistic features on the phase and power
modulation of the MEG signal within the following bands: delta

Fig. 1 | Data analysis workflow and presentation of feature-dependent phase-
amplitude coupling (PAC) computation. An example sentence is shown, along
with the syntactic features derived from the constituency tree (a), i.e. tree depth
and the number of closing nodes, which are shown below each tree leaf (S: sen-
tence, VP: Verbal phrase, NP: Noun phrase, CC: Coordinating conjunction, ADV:
Adverb, VB: Verb, NN: Singular noun, DET: Determiner). The MEG recordings (b)
together with the full stimulus representation (c consisting of sound envelope,
word onsets, statistical features shown in green and syntactic features in purple)

are used to compute the temporal response functions (d). Finally, the bottom
diagrams (e–g) summarize how feature-dependent PAC is estimated. e We first
extract the phase at low-frequency and the amplitude of high-frequency band of
the signal. f Those time series are then combined to form the complex analytical
signal. The Temporal Response Function (TRF) is thus computed directly in the
complex domain from the latter signal and the amplitude of the resulting coeffi-
cients ∣β∣ are taken as the PAC estimate (g).
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(0.5–4Hz), theta (4–8Hz), beta (15–25Hz), gamma (30–80Hz). We
computed theTRFmodels for each linguistic feature set and frequency
band, and evaluated the reconstruction accuracy of the models. The
results are presented in Fig. 3.

Joint contributions of rule-based and statistical features
We now assess how brain signals vary in response to specific aspect of
linguistic stimuli. Namely, we built two rule-based features, both
derived fromsyntactic constituency trees: closedesignates thenumber
of phrasal constituents a given word is closing (thus counting closing

brackets at each word), while depth stands as a proxy of ongoing
syntactic complexity simply bymeasuring howdeep in the hierarchy a
given word is. The two other features, surprisal and entropy, are
derived fromaneural languagemodel fromwhichwe can compute the
probability distribution of next word prediction based on the pre-
ceding context.We first analysed the spatio-temporal dynamics of low-
frequency activity in response to all features using a convolutional
model which consists in estimating so-called temporal response
functions (TRFs). We assessed the reliability of those features in
representing the MEG data by computing the reconstruction accuracy

Fig. 2 | Power spectral density (PSD)of theMEGdata and the stimuli, andword-
related phase and powermodulation. a, b PSD ofMEG averaged over sensors for
French and Dutch listening conditions. A cluster-based permutation test revealed
no significant difference between average power, although the permutation
revealed a marginally significant cluster in the beta band, showed with the shaded
area (p-value = 0.06). The topographic inset presents the power difference within
this frequency band, marked sensor are sensors for which the difference were
significant (one sided paired t-test with α =0.05, dof = 24, fdr-corrected for com-
parisons across 269 sensors).b PSDof the acoustic envelope average across stories
within each condition, no significant difference found (using cluster-based per-
mutation using independent t-tests as cluster statistics). c Cerebro-acoustic
coherence. We computed the magnitude squared coherence between MEG sensor
data and speech envelopes. The shaded areas are clusters with a cluster p-value

below 0.05 (p =0.00977 and p =0.00098 for delta and theta-band respectively).
Note that the coherence is actually greater for the French condition. The first
column of topographic plots on the right indicate average coherence values in the
given regions; in the second column we show the difference contrast between
Dutch and French conditions within those frequency bands. d, e Inter-trial (time-
locked on word onsets) phase clustering (ITPC) and power modulation respec-
tively, averaged across sensors. The contour outlines significant time-frequency
cluster (cluster p-values of 0.001 and 0.005 respectively, cluster-based permuta-
tion using one sample two-sided t-test, cluster threshold at t(1–0.005, 24) = 2.8,
applied on data after baseline removal, therefore testing for difference w.r.t base-
line). Using a similar statistical approach, we did not find any significant difference
between French and Dutch listening conditions.
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at each sensor (or sources) for severalmodels (as described in Table 1).
As a baseline, we used a model with only acoustic and word onset
regressors. Every model is then matched in number of regressors by
swapping the feature of interest with a null feature, which follows the

same statistics. Each nullmodel for a given feature set consists of a TRF
computed by using a shuffled version of the stimulus features (the
shuffling is strict, as we keep word onset intact and shift values of
linguistic features by several words). For instance, to compute the

Fig. 3 | Phase and powermodulation. a Inter-trial Phase Clustering (ITPC) in delta
(left) and theta (right) bands computed using a TRF model with only word onsets
on band passed normalised complex data (so a signal of the form eiϕ(t)). In bold red
is the time course of the cluster of sensors for which we found significant effect
using cluster-based permutation compared against baseline (negative lags). The
shading yellow area indicates the time span of the cluster. The peak of each sensor
time course are marked according to their respective latency (colour scale for
latencies shown below the x-axis), those peak times are also reported on the
topographic inset. b Power modulation computed on band-limited power using a
TRF model with word onsets only. c Reconstruction accuracy for different time
windows, with relative contribution of each feature set, displayed as a stacked area
plot. Thick segments on top show uncorrected significant time intervals (one
sample two-sided t-test against a population mean of 0, n = 25), circle markers
indicate significant time intervals corrected for multiple comparison (Bonferroni,

n = 13 time windows). dMean scores increment (over base models scores) for each
feature sets and frequency bands. Error bars show standard error of the means.
Significance evaluated from paired t-tests (two-sided, dof = 24) comparing mean
between feature sets. The bottom box plots present the absolute score distribu-
tions. Box boundaries represent the quartiles of the data while whiskers extend to
the smallest and largest values within 1.5 times the interquartile from the lower and
upper quartiles respectively. The overlaid points show individual data (n = 25).
e Unique (green and purple for statistical and rule-based sets respectively) and
shared (red to yellow colour scale) contribution to score, projected in source space
(one-sided paired t-test comparing the mean score at each vertex location, dof =
23). A transparency threshold corresponding to a corrected p-value of 0.05 (FDR
correction for 8196 vertices) has been applied (note that for delta, the threshold is
lower: p < 1e−4).
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relative increase in reconstruction accuracy of Rule-based features (as
seen in Fig. 3d), we alter the values of the close and depth featureswhile
keeping their original timings. By comparing the score to baseline null
models, we normalise for the increasing number of features as each
null model contains the exact same number of regressors. As seen in
Fig. 3d, each set of features generates a significant increase in recon-
struction accuracy compared to null models. A linear mixed-effects
(LMM) model analysis, including subject variability as a random
intercept with a random slope per frequency band, revealed that the
feature set had a significant overall effect on the relative score (like-
lihood ratio test against LMMwithout feature set factor, χ2(17) = 231.65,
p <0.001) and that frequency band does not significantly influence
score outcomes (χ2(18) = 15.53, p =0.63), suggesting that the pattern
seen for each model score might be similar across frequency band.
Importantly the full model, which contains both statistical and syn-
tactic features, shows a significantly higher reconstruction accuracy
than both other models. We also compared the reconstruction accu-
racy of the joint model, comprising all features, and amodel where we
combined TRF coefficients from the two independently trained “sta-
tistical" and “rule-based" models (called additive model in Fig. 3). The
rule-based model presents a marginally higher reconstruction score
compared to the statistical-only model in the delta band (paired t-test
on means, p < 0.005, correcting for multiple comparison with FDR
(Benjamin/Hochberg)). No significant differences were observed in
other frequency bands. Across every frequency bands, the joint model
performed better than either specific models (all tests in Fig. 3d are
controlled for multiple comparison with FDR (Benjamin/Hochberg)
correction on p-values).

Time-resolved contributions of syntax and statistical features
We further investigated the time-resolved contribution of each feature
set to the overall score.We computed the score for each feature set for
a series of time windows, by evaluating a TRF model per window of
analysis. Therefore, there is a distinct TRFmodel trained for small non-
overlapping segments of 100ms each, spanning from -400–900ms
around word onsets. This is shown in Fig. 3c for each frequency band,
where the stacked plots represent the relative increase (in percentage)
of themodel of interest over an acoustic model of reference. The base
model uses only speech envelope as a feature, while other features are
mismatched between stimulus and MEG. Results show that syntactic
features mostly contribute to the score throughout a large time win-
dow extending at earlier and later time lags. For both feature sets, we
see significant reconstruction beyond and above acoustic and word-
onset only models (Fig. 3c shows uncorrected significant segments
with a coloured bar above time regions (paired t-tests, dof = 25). We
then adjusted p-values of our statistical tests using a conservatory
Bonferroni correction, therefore dividing our critical p-value by the
number of lags and feature set, to control for potential increase in type
I errors. Corrected significant time segments are shown with a marker
on the corresponding time-course).

For this time-resolved analysis, we used causal filters in order to
avoid any spurious artefacts due to filteringwhich could alter the score
of earlier lags (note that for the rest of the analysis we chose to keep
anti-causal FIR linear filter in order to not alter the phase of signals).
Despite this, we observe significant improvement at negative lags in
the delta-band. In a supplementary analysis (Supplementary Fig. 2) we
compared the score for each individual feature without grouping
them. This showed that entropy and close contribute to the recon-
struction accuracy at negative lags. This is not anti-causal as the
entropy at a given word depends only on the previous words heard. In
other words, it is possible to observe a neural response time-locked to
the current word onset if we assume that the timing of the coming
words is anticipated. For close feature, the same reasoning does not
hold, however it can be argued that, in many cases, words closing
constituent phrases are also likely to bemore anticipated. This can also
be an evidence of anticipatory mechanism for syntactic processing of
ongoing structure building. The auditory system have been shown to
be sensitive to long-term duration prior, learned from lifelong expo-
sure over language-dependent syntactic cues64. Finally, the improve-
ment in reconstruction accuracy for syntactic features at later time
lags is likely due to the integration of words into larger syntactic units.
This is supported by the fact that TRF time course for closing bracket
count feature present the largest coefficients at later time-lags. This
feature corresponds to the number of syntactic units that are closed at
a given word, which is a proxy for the integration of words into larger
syntactic units.

Phase amplitude coupling
It has been suggested that the phase of low-frequency activity may
modulate power of higher-frequency band limited activity or oscilla-
tions in order to align excitability of neural population with relevant
segment in speech48,61 or in order to temporally bind and encode
structural information56. The question remains whether this coupling
between low- and high-frequency neural activity is also modulated by
the predictability of words, thus affecting the temporal prediction of
syllable and word onset53. We decided to investigate the presence of
phase-amplitude coupling (PAC) in the MEG data, and in particular to
disentangle the effect that distinct linguistic featuresmayhave onPAC.

First, we examined the presence of PAC across the entire signal,
regardless of the timing of words. That is, we used equation (5) but
instead of averaging across trials, we took the average across time. We
computed PAC modulation index for each label in source space fol-
lowing the parcellation from Destrieux et al.65 to limit computational
time and memory (74 labels per hemisphere). We found evidence of
PACbetween thephaseofdelta-band activity and thepower in thebeta
and gamma range, as well as between the phase in the theta range and
gammapower (Fig. 4). PACestimateswerecompared to surrogatedata
in order to compute a normalised metrics by z-scoring the resulting
modulation index using the mean and standard deviation from the
surrogate data computation. Those standardised metrics were then
contrasted with the French condition for statistical testing. We found
significant PAC when averaging over labels with the strongest mean
PAC values (paired t-tests, dof = 24, realised per phase and amplitude
frequencybins, fdr-corrected to control formultiple comparisons).We
observed greater PAC over fronto-temporal network for both delta-
beta and theta-gamma PAC (Fig. 4, bottom panels).

Furthermore, we are introducing a newmethod to disentangle the
effect of different stimulus features to PAC. As such, we are investi-
gating PAC relative to word onsets. The simulations described in Fig. 6
show that we can recover the effect of an individual feature affecting
phase-amplitude coupling using a linear forward model based on the
complex analytical signal formed with the power of high-frequency
activity and the phase of low-frequency activity rhighðtÞeiϕlowðtÞ. This
novel approach relies on a linear forward model akin to temporal
response function computation where instead of the band-passed

Table 1 | Model names and feature sets used in the analysis

Model Name

Feature Base Statistical Rule-Based Joint

Envelope ✓ ✓ ✓ ✓

Word onsets ✓ ✓ ✓ ✓

Surprisal ✗ ✓ ✗ ✓

Entropy ✗ ✓ ✗ ✓

Depth ✗ ✗ ✓ ✓

Close ✗ ✗ ✓ ✓

The ✓ symbol indicates that a given feature is present in the model while ✗ indicates that a null
version of the feature was used (shifted values while keeping the same onset timings).
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MEG data we used the normalised analytical signal (see bottom panels
of Fig. 1). By doing so, we effectively look at how the phase of the
complex analytical signal clusters at a given lag. The advantage of this
method is that it takes into account every predictor we feed into the
forwardmodel and thus allows us to establish which features weigh in
themost (see details in Methods section, simulations of this technique
are presented in Fig. 6, and further discussion can be found in the
supplementary materials).

We computed the PAC for each feature set and compared it to a
null model where only the feature of interest is being shuffled. First,
the likelihood ratio test comparing LMMs with and without the cate-
gorical variables for feature sets and frequency bands indicated a
significant overall effect (χ2(7) = 378.63, p <0.001), suggesting that
these factors contribute to variations in the relative score. Pairwise
analysis revealed greater score reconstruction for the joint model for
delta-beta while the Rule-based model presents stronger score in
theta-gamma (see Fig. 5a and c, paired t-tests, dof = 25, p-values
adjusted with FDR correction, to compare score increment w.r.t Base
model between eachmodel: for the delta-beta PAC: between Statistical
and Rule-Based model, p = 7.5e−4; between All and Rule-based model
p = 2.7e−9; for theta-gamma: p =0.014 and p = 0.48). To investigate the
effect of PAC from a specific feature, we computed null models where
only the feature of interest is being shuffled, one at a time. Then we
used a permutation cluster-based analysis to compare the coefficient
of the PAC for a given feature and its corresponding null model. Fig. 5
(panels b and d) show the resulting phase-amplitude coupling coeffi-
cients for individual features (supplementary Fig. 3 shows all features,
including controls, such as PAC from acoustic envelope). We sum-
marize the PAC coefficient by computing the global field power (mean
squared value) across sensors. A cluster-based permutation test was
run against baseline mean values (t-statistics as test statistic, with
primary threshold of p <0.05, randomly permuting condition labels
1000 times, significance threshold for clusters set at 0.05). All features
significantly modulated cross-frequency coupling in the delta to beta
bands. While only precision entropy and closing bracket counts

showed a significant modulation of gamma power through theta
phase. Higher PAC coefficients were found in the superior temporal
gyri bilaterally. In the left hemisphere, we found clusters in the inferior
frontal gyrus, the anterior temporal lobe (for close only) and the
superior temporal gyrus. The left inferior frontal gyrus and the left
anterior temporal lobe are two regions that have been previously
associated with syntactic processing and semantic composition27,58,66.

Discussion
A growing number of studies demonstrated how to measure the sen-
sitivity of the brain to naturalistic speech for word-level features. It
remains difficult to control for confounding aspects, such as in Ding et
al.24, where it has been argued that the chunking observed around
syntactic phrases might be elicited simply by word-level occurrence
statistics or by the repetition of part-of-speech tags25.

We built a word-level representation of naturalistic speech
encompassing both syntactic, rule-based, features and statistical, data-
driven, features. We showed that both feature sets could be recovered
from MEG signals and that they could be used to decode the com-
prehension state of the subject. Finally, we showed how phase-
amplitude modulation jointly occurs for both feature sets, suggesting
that they are both processed and orchestrated in parallel. We found
overlapping brain regions for both feature sets, in particular in the left
inferior frontal gyrus, and in the anterior temporal lobe, two brain
regions that have been previously associatedwith syntactic processing
and semantic composition26,27,66. Using naturalistic stimuli, we dis-
sociated, on the one hand feature set computed solely based on sta-
tistics of word sequences as computed via GPT model and, on the
other hand a set of rule-based abstract features built directly from
constituency tree structures. Temporal response functions obtained
from those feature sets could each explain variance in MEG signals
beyond chance and gave enhanced representations of the signal that
allowed for decoding of comprehension state on unseen subject data.
Nelson et al.27 showed that broad-band gamma activity was more
sensitive to syntactic surprisal, dissociating statistical features from
syntax. Although, they trained statistical models purely on sequences
of part-of-speech tags,which conveniently remove the lexico-semantic
properties of the context. In the present study, we cannot control for
the syntactic information contained in the statistical features, but we
verified that the sensitivity to phrasal boundaries is at least minimal in
those features. In particular, the language model is trained to predict
the next word given the previous ones, and thus may learn an
approximation of syntactic distributions across words as much as that
approximation facilitates next word prediction. Therefore, the statis-
tical features are not fully independent of syntax. However, syntactic
features are computed from annotations of the constituency-parse
tree structure of the sentences, and thus do not contain any infor-
mation about the statistics of word sequences. And we assume that
they are solely driven by the syntactic structure of the sentences.

The result of the joint model explaining over and beyond any of
the individual feature sets suggests that the brain is sensitive to both
aspects of language in an inseparablemanner. This synergy is observed
in regions where both types of information are encoded with equal
strength. We found that both feature sets consistently drive an
increase relative to our base model (envelope and word onset) across
frequency bands (see Fig. 3). Only in the delta band we observed a
significant improvement of Rule-based feature over Statistical ones.
Syntactic processing has been previously shown to elicit a stronger
phase-locked neural activity within the delta-band in response to
speech24,49,67,68. However, as both feature sets contribute to a sig-
nificant increase, we infer that statistical information aids the inference
of categorical information. The idea that both prediction errors and
representational states, which in the present study may be related to
statistical and syntactic features respectively, are processed hier-
archically and in parallel at different levels has been recently the

Fig. 4 | The top panels present the stimulus-wide Phase-Amplitude Coupling
(PAC), not time-locked to word events. PAC values were normalised (z-scored)
against PAC estimated from surrogate data (shuffling amplitude segments). As
every frequency across phase and amplitude are scanned, PACwas only computed
for labels of a parcellation of the source model to reduce computation time and
memory resources. Yellow outlines indicate phase-amplitude bins for which FDR-
correctedp-values, correcting formultiple comparisonacross frequencies and time
bins, are < 0.05 (one-sided t-test, dof = 24, testing for population mean >0.0). The
bottom row shows the raw t-statistic (dof = 24) of PAC strength (Dutch - French)
across participants at the source level. Note that the parcellation used65 is outlined
with grey lines.
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converging result across a number of studies using naturalistic stimuli
for speech11,14,69 This effect can be observed at other levels of granu-
larity during speech processing, for instance, in the processing of the
spectro-temporal acoustic features into categorical phonemes, and
from phonemes themselves into lexical representations - in this sense,
integration from phonemes to words, is modulated by statistical cues
from top-down predictions5,13,59. In particular, our findings relate to
Giraud & Arnal5 who showed that slow cortical activity is related to the
processing of the predictability of the next word in a sentence. Our
results extend this finding by showing that low-frequency phase
information modulates gamma power in a way that is related to the
predictability of the next word in a sentence, namely when the
uncertainty of those predictions is high.

Different aspects of syntax have been previously linked to brain
activity ranging from syntactic violation and the P600 event-related
potential component70 (for a review, see Kuperberg, 200771), to phrase
structure tagging24 and syntactic surprisal27. In particular, the merge
operation26,27,72 has the privilege of reflecting a crucial aspect of syntax,
namely its recursive and combinatorial power. Themerge operation is
fundamental for compositionand syntacticunification. It is also crucial
in endowing language with its recursivity, allowing it to generate an
unbounded set of utterances from a finite vocabulary set. Researchers
have focused on pinpointing a specific location for such

computation26. However, it is unclear whether such computation, in
the brain and in complementary fashion to computational-level claims
in formal theories, occurs in isolation from semantic processing and
more generally, from the dynamical update and integration of cues at
different levels of the speech and language processing hierarchy21. We
used the closing bracket count as a proxy for the binding operation,
similar to other studies23,27. We found that spatio-temporal responses
to both syntactic features are generally left-lateralised, but not exclu-
sively so; moreover, we found distributed activity in the left anterior
temporal lobe and in parietal regions and inferior frontal gyrus. In the
time domain, we found a significant effect of closing nodes in both
delta and theta bands. Other studies have attributed neural tracking to
speech in the theta-band to the active chunking process of word
units73, perhaps aided by predictions5,59. In that respect, our data sug-
gest that syntactic processing may also play a role in aligning with
linguistic units and in providing a basis for tracking of such
linguistic units.

Syntactic and predictive processing do not need to be fully dis-
joint in the brain. Each feature can jointly contribute to the prediction
of upcoming input while at the same time help in integrating context
with currently processed units. Locally, in a given neural circuit, we
propose that binding of neural representations can be made through
phase-amplitude coupling. Thismechanismhas been proposed to be a

Fig. 5 | Feature-basedPhase-AmplitudeCoupling (PAC). a,bTheta-gammaphase
amplitude coupling. c,dDelta-beta phase amplitude coupling. Left panels show the
increment of reconstruction accuracy with those Temporal Reponse Function
(TRF) models against the Base model (envelope and word onsets). Two-sided
paired t-tests were used to compare the scores of the different models (dof = 24,
stars indicate a quantisationof the exponent in power of 10of the p-value). The box
plots present the data distributions. Box boundaries represent the quartiles of the
datawhile thewhiskers extend to the smallest and largest valueswithin 1.5 times the
interquartile from the lower and upper quartiles respectively. In the right panels
(time course and source space), cluster-based permutation test (using two-sided

one sample t-test as a statistic, initial threshold set at the t-value for α =0.05 with
dof = 24) was used to compare the PAC coefficient values of a given feature and its
corresponding null model. The time course represents the global field power
across sensors (standard error of the means shown as shaded area around curves).
Grey shaded areas present temporal spread of significant clusters. After projecting
in source space, we ran a spatio-temporal cluster based permutation to test sig-
nificance of coefficients against baseline. We show, below the time courses, the
time-averaged cluster in source space for each feature, masking the observation
statistics below the 97.5th percentile of their distribution.
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general mechanism for neural binding74,75, and has been argued to be
involved in the processing of linguistic features5,56,59,61,67. In particular,
we found that the coupling between theta phase and gamma ampli-
tude was stronger, specifically for entropy and for the integration of
nested trees. This may suggest that the two feature sets are processed
in parallel. These features reflect how neural dynamics anticipate
precision-weighted predictions and integrate a word to the current
phrase respectively.

We see evidence of phase alignment and power modulation from
the word-evoked activity by measuring phase constituency and
induced power across all canonical frequency band of M/EEG. Impor-
tantly, the phase constituency may reflect mere evoked and time-
locked activity, and not only oscillatorymechanisms. Therefore, we do
not take those results as evidence for the presence of oscillatory
response for low-frequency signals. Beta band power might, however,
be reflecting oscillatory power change. Interestingly we see a typical
decrease in beta power at the word-level. But once we disentangle the
effect of specific features, we find for instance, a positive effect of
syntactic depth, a broadproxy for syntactic complexity, which is in line
with the structure and sentence-building effect leading to increased
beta power observed72,76,77. More recently, an analysis on the depen-
dency parse of sentences on this very same dataset also provided with
evidence for the role of beta formaintenance and/or predictionduring
dependency resolution. Zioga et al.30 showed that the beta power was
modulated proportionally with the number of dependencies to be
resolved. This would result in a consistent power increase while
complex sentences are being processed. We also find a positive effect
of depth in the delta band,which is in linewith the syntactic processing
account of delta tracking16,24,49,54,67,68.

Our results support the dual timescale for predictive speech
processing as proposed by Donhauser & Baillet59. The observed theta/
gamma coupling occurs for highly expected information gain (high
entropy leading to stronger coupling) and for words which must
integrate into a larger number of constituents. This is in line with the
idea that theta is a sensory sampling mechanism tuned to maximize
expected information gain59. A word that closes several nested con-
stituents will generally be well predicted syntactically (for its part-of-
speech tag is constrained by context) but highly anticipated semanti-
cally (anticipated, as in expecting high-information content although
not actually known or predicted), as it plays a crucial role in the sen-
tence (and even more possibly in word-final languages). As such, an
externally driven, weakly entrained, oscillator could synchronize the
integration of a word into a larger syntactic structure while aligning
through phase synchrony and nested theta-gamma oscillations the
excitability of neural assemblies engaged (as in48 though at word level
here). This is synchronized both with the input and the internally
generated temporal predictions further as the expected information
gain is high. The computational model proposed by Ten Oever &
Martin53 also supports such framework where the predictability of a
word will generate a corresponding phase advance or lag. Although in
our study, it is precisely the expected information gain that is driving
the phase synchrony. On the other hand, delta/beta coupling occurs
for words that are less predictable, i.e., with a high surprisal value. This
is in line with the idea that delta is encoding non-redundant informa-
tion as in Donhauser & Baillet59. In other words, novel information
deviating from internally generated predictions generates an update
of the internal model. Top-down predictions, but also updates, have
been already linked to beta power modulation61,76. All in all, this
mechanism, if supported via delta-phase, is bound to endogenously
generated predictions and thus to the internal model of the listener21.
Given the synchronous increase in coupling for syntactic features
(depth and close) we suggest that this internalmodel update is aligned
with the slower rhythm of (predicted) phrasal boundaries60. We find
these results to align with the idea of multiplexed and alternating
predictive and integrative mechanisms between, respectively, top-

down and bottom-up information as seen in Fontolan et al.78 or in the
syllabic-level speech inference model from Hovsepyan et al.61.

If based purely on data showing tracking to sound envelope, we
must note that delta band does not reflect purely linguistic processes.
First we see on the present data that coherence with sound envelope is
stronger in delta for uncomprehended language, and that power alone
does not carry sensible difference between our listening condition
(Fig. 2a, b). Moreover, low-frequency tracking of envelope is sensitive
to acoustic changes too, rather than linguistic information, for
instance it becomes larger when pauses are inserted in the stimulus79.
Here however, we note the role of delta phase and its coupling with
higher frequency band, in particular beta, for the processing of lin-
guistic features. We observed strong dependency of beta modulation,
coupled through the phase of delta due toword surprisal. This is in line
with the idea that beta carries out top-down predictions56,61 and
internal model updates while being modulated by the phase of endo-
genously generated delta rhythms30,77,80. Given the importance of
theta- and delta-band speech tracking for comprehension38,45,62,81, we
propose that the coupling between delta and higher frequency bands
is a general mechanism for the processing of linguistic features, pos-
sibly leveraging the temporal regularities of lower-level cues to align
with internally generated predictions and representations. Previous
studies have highlighted the role of beta oscillations for predictive
coding61,82.

We use surprisal as a proxy for information prediction, whichmay
or may not take some syntactic and semantic features into account. It
certainly does not build upon lower levels such as spectro-temporal
acoustic information, as this would imply having trained a statistical
languagemodel from raw audio data. In the classical view of predictive
processing though, bottom up prediction errors are matched against
top-down predictions. One caveat in language is that, beyond the
sensory representations, the hierarchy of representation is not well-
defined in the brain. Structural and semantic information may not
need to always sit within a strict hierarchy (except for example when
function application or domain specification for semantic functions is
specified by syntactic structure - which may be quite often), and the
brainmay nonetheless leverage both sources of information towork in
parallel. Thus, it is unclear what becomes top-down or bottom-up
information at the sentence level, when considering only word-level
features. Moreover, we must account for the temporality of speech,
where contextual information, from previous words, also helps to
refine predictions. In this study, surprisal and precision (entropy)
encompass such information from the word sequence, while syntactic
features are more likely stemming from higher levels sources (i.e., not
purely lexically-driven) if we consider the possibility that sentence
level representations serve as top-down predictions for upcoming
word-level processing. Indeed, the information added by incoming
words within nested syntactic structures comes about by taking in
account the embedding into a larger constituent, and thus reflects
linguistic knowledge and processing over the entire sentence, if not
discourse. As such, on a predictive account, the information from
lower levels, such as phoneme sequence and fine-grained acoustic
information, together with their relation to word recognition, must
also be accounted for to fully capture the predictive context of speech
processing. A comprehensive account of a predictive coding theory of
speech processing must therefore incorporate an ongoing model of
language processing together with perceptual processing of incoming
sensory input.

In conclusion, we investigated the contribution of rule-based
syntactic features together with the sequential predictability of words
to cortical signals. Each set of features resulted together in a more
accurate representation of MEG signals, suggesting an overlap in how
the brain encodes and processes those different features. By com-
puting a forwardmodel, we could extract the neural response to those
features from naturalistic listening conditions, thus leveraging the
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need to manipulate the stimulus to exhibit responses to phrase
structures. Syntactic operations, such as merge, operationalised here
with the closing bracket count, together with the depth in con-
stituency tree structures, showed a temporally broader response
around word onset as compared to the sequence-derived features of
surprisal and entropy. Across several frequency bands we observed
distinct networks with some overlapping regions were both feature
sets improved reconstruction accuracies. In particular, we found that
the statistical featuresweremore sensitive to theta band activity, while
the syntactic features were more sensitive to delta band activity.

Phase-amplitude coupling analysis revealed that the two feature
sets are processed in parallel, and are used to predict the next segment
(lexicalised items in the current study) as it is integrated with the
current context. We found that the coupling between theta phase and
gamma amplitude was stronger, specifically for entropy and for the
integration of nested trees. This suggests that the two feature sets are
jointly used to update predictions and integrate the linguistic content
to the current phrase. Given the role of theta band in speech
tracking59,62,73 we suggest that such rhythms are tightly bound to the
acoustic signal and reflect thus temporal predictions aligned with high
expected information53. More generally, all features presented sig-
nificant cross-frequency coupling between delta and higher frequency
bands. But we observed a larger delta-beta coupling for surprisal,
potentially in line with the idea that beta carries out top-down pre-
dictions and internal model updates while being modulated by the
phase of endogenously generated delta rhythms. Given the impor-
tance of theta- and delta-band speech tracking for
comprehension38,45,62,81, we propose that the coupling between delta
and higher frequency bands forms a core cortical computational
mechanism for the processing of linguistic features, as speech
becomes language, and leverages the temporal regularities of lower-
level cues to align with internally generated predictions and
representations.

Methods
The study was approved by the ethical commission for human
research in Arnhem and Nijmegen (CMO2014/288). A total of 25 par-
ticipants (18 women, between 18 and 58years old) completed the
experiment. Informed consent was obtained from all individual parti-
cipants. All participants were right-handed native Dutch speakers with
no reported fluency in French despite incidental exposure. Partici-
pants self-reported their (in)ability to understand a sentence in French.
Participants were given monetary reimbursement for their
participation.

Experimental design
Participants were asked to listen and pay attention to several audio
stories while we simultaneously recorded their MEG. The stimulus
consisted of Dutch short stories (from Hans Christian Andersen and
the Brothers Grimm) and French stories (from Grimm, E. A. Poe and
Hans C. Andersen) available online on the Gutenberg project, totalling
49min and 21min, respectively. All stories were divided into short
story parts lasting between 5 and 7min (leaving a total of 9 Dutch story
parts and 4 French ones). Each story part was presented without
interruption, while participants fixed a cross in the centre of the pre-
sentation screen. Participants were prompted on-screen with five
multiple-choice questions between each part to assess their attention
and comprehension. Stimuli were presented using the Psychtoolbox
library on Matlab83.

MEG data were acquired at 1200Hz using a CTF 275-channel
whole-head system (VSM MedTech, Coquitlam, Canada) in a magne-
tically shielded room. The MEG system was equipped with 275 first-
order axial gradiometerswith abaseline of 5 cm. Theheadpositionwas
measured before and after the experiment using five head position
indicators (HPI) coils. The HPI coils were activated every 200ms

during the experiment tomonitor headmovements. Theheadposition
was corrected for each story part using custom-built Matlab code to
display how the head aligns with the initial recorded position; parti-
cipants were asked to adjust their head position to fit head markers if
themovement was too large. Participants could self-pace the start of a
trial after answering the behavioural comprehension question, allow-
ing them to pause between stories blocks. Each participant also had a
structural MRI scan (T1-weighted) using a 3T MAGNETOM Skyra
scanner (Siemens Healthcare, Erlangen, Germany). The MRI scan was
used to reconstruct the cortical surface of each participant using
FreeSurfer software (Martinos Center for Biomedical Imaging, Char-
lestown, MA, USA). The cortical surface was used to project the MEG
sensor data onto the cortical surface using a linearly constrained
minimum variance beamformer84. Finally, we measured the head
shape of each participant using a Polhemus Isotrak system (Polhemus
Inc., Colchester, VT, USA) to co-register the MEG and MRI data.

MEG preprocessing
The original MEG data were recorded at 1200Hz. We first resampled
the data at 200Hz after applying and anti-aliasing low-pass filter to the
data. Noisy channels and flat channels were marked as bad for inter-
polation and to be discarded in subsequent analysis (computation of
covariance or ICA algorithm).We removed blink artefacts bymatching
ICA component time courses to measured EOG and similarly removed
heartbeat artefacts. Note that the ICA decomposition was run on data
filtered between 1 and 40Hz, we then kept the ICA spatial filters for
subsequent processing while discarding the band-passed data used to
compute them. Finally, we applied a notch filter at 50Hz to remove
line noise.

Source reconstruction. We then used all data to compute a data
covariance matrix, and used it to compute a noise-normalized linearly
constrained minimum variance (LCMV) beamformer84. The LCMV
beamformer was created using a 7mm grid with 3mm spacing, using
functions from the MNE-python library85.

Time-frequency analysis. was performed on the MEG data using the
MNE softwarepackage85.Wefirst epoched thedata aroundwordonset,
with no baseline applied. We then used the Morlet wavelet transform
to compute the time-frequency decomposition of the MEG data. The
Morlet wavelet transform was computed with varying number of
cycles from 2 to 7 cycles. We used a logarithmically spaced grid of
frequencies between 3 and 80Hz, with 32 steps. The time-frequency
decomposition was computed for each epoch. We extracted the
average power by taking the absolute of the complex Fourier coeffi-
cients and the inter-words phase constituency by summing the com-
plex Fourier coefficients after normalising them by their
absolute value.

Stimulus representation
Most of the analyses performed relied on linearmodels.We computed
forward encoding models which map stimulus features to MEG data.
Suchmodels are also called temporal response functions (TRF)86. This
approach gives us away to assess the importanceof each feature in the
stimulus in explaining the MEG data. The obtained model coefficients
are also directly interpretable in terms of modulated neural activity, as
opposed to filters learned from backward models87. In this section, we
will first present how each stimulus features were defined and com-
puted, and then how the TRFs were estimated from the data.

In light of the current literature, we focused on rule-based syn-
tactic features on the one hand, following cortical tracking of hier-
archies suggested by Ding et al.24, and on statistical features reflecting
predictive processing of sequences38. The syntactic features were
computed using the Stanford parser88. The statistical features were
computed using the GPT2 language model89.
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Importantly, we do not assume that language processing is sup-
ported by information-theoretic metrics in the hard sense. That is, we
are not proposing a theory of language understanding from mere
surface statistics. However, following the hypothesis given by theories
on predictive processing in various cognitive domains and notably for
perception, we assume that the brain can extract information-
theoretic features from the stimulus, regardless of the specifics of its
representational format (e.g., functionally semantic or syntactic), and
that these features are actively used to predict internal representa-
tions. Those information-theoretic features are thus a proxy for the
underlying domain-general cognitive process of predictive inference,
notably for predictive processing and Bayesian inference, where sur-
prisal becomes a proxy for prediction error59,90 and entropy for
uncertainty3. Both of these are critical concepts in predictive proces-
sing. These quantities are involved in most predictive mechanisms4,90,
where cues are extracted at different representational levels to predict
or infer upcoming linguistic information.

On the other hand, rule-based features are derived from specific
instantiations of parsing mechanisms (such as constituency trees in
context-free grammar), which already support a particular theory of
syntaxderived from linguistics rather thanneuroscience. Again, we are
not suggesting by the use of those particular features that the brain is
precisely implementing such a parsing strategy to compute syntactic
representations. Nevertheless, the known sensitivity to such
structures24 motivates the use of a metric that captures the general
shape of syntactic trees throughout naturalistic sentences.Wedecided
to create a set of features that tracks the complexity of such structures
and also captures the integrative mechanisms at play when words or
phrases need to be integrated into a larger syntactic unit. We note that
although the left-corner parsing strategy has been previously sug-
gested as a better model for cognitive processing of syntax22,58,91, this
was done on English data and potentially differs in head-final or mixed
word order languages16,92. Finally, it may be that for the method
applied here, the fine-tuning of parsing strategy does not matter as
much as the mere presence of brackets, indicating constituent
structures16.

• Rule-based (or Syntactic) features: To build our syntactic features,
we first ran a tree parser on every sentence from our stimuli.
1. Depth: Syntactic depth is a proxy for syntactic complexity. A

word highly embedded within nested structures, which is to
say, a word deep in the tree structure hierarchy, will carry a
higher value for this feature. This may reflect several cogni-
tive processes among which the maintenance in working
memory of syntactic structure or the general cognitive load
for processing complex sentences.

2. Close: This refers to the number of subtrees being closed at a
given word. Some words do not close any subtree, and some
will close several at once. This feature encompasses the
variability accounting for integrative mechanisms such as
“merge"26. When words or phrases need to be grouped into a
larger syntactic unit this feature is incremented. It is also
referred to as bottom-up count of syntactic structures16,23,92.
This is in contrast to the top-down count, which enumerates
opening nodes. Giglio et al.92 found bottom-up parsing to
better represent structure-building during comprehension
rather than production, which we decided to use here.

• Statistical features: Extracting the information-theoretic values
requires an estimate of the probability distribution of each word
in the utterance conditioned on the previous word (over the
entire vocabulary). This was quantified using GPT2, a state-of-the-
art language model, which is trained specifically to causally
predict word from sequences of textual data.
1. Surprisal: The negative natural logarithmof the probability of

a given word item conditioned on the sequence of preceding
words; � logðPðwijwi�1,wi�2, . . . ,w1ÞÞ.

2. Entropy: It quantifies the amount of uncertainty, at a given
word, in predicting the next word. Mathematically, this is the
expected surprisal, which we can also interpret as the
expected information gain. It is computed
as �P

wordsPðwijwi�1, � � �Þ logðPðwijwi�1, � � �ÞÞ

On top of those features of interest, we used two other
regressors to control for the low-level acoustic and prosodic
effects on neural signal as well as any unexplained variance at the
word-level. This was achieved by using the acoustic envelope
along with a “word onset" features. The former was computed
from the audio waveform by half-rectifying it and then applying a
low-pass filter (type I FIR filter, fc = 20 Hz, transition bandwidth of
10 Hz, attenuation in stop band of 60dB, ripples relative to
peak = 1e−3) and raising the signal to the power of 1

3 to mimic the
non-linear compression from early auditory processing stages.
The latter comprised of a comb-like feature with constant values
of “ones" aligned with every word onsets. A table of the features
used in the analysis is presented in Table 1.

The correlation is not excessively high and should not, pre-
sumably, lead to collinearity issues in the subsequent analysis. To
verifywe computed theVariance Inflation Factor (VIF) for each feature.
All VIFs were below 2, which is below the threshold of 5, indicating that
there is no collinearity issue in our data93.

Temporal response functions
With the speech representation time-aligned to the magneto-
encephalographic recordings, we then compute optimal filters
that map the stimulus to the MEG signals. This is known as for-
ward modelling, or encoding, and in particular the present
method boils down to extracting temporal response functions of
the above features. This method assumes a convolutional linear
model mapping from stimulus to MEG data. Such an approach has
been successfully applied to recovering brain responses to sound
envelope7,62, allowing to further decode auditory attention, and
also in estimating brain responses to ongoing linguistic
features38,94. This has been applied with different neuroimaging
data such as fMRI, ECoG, and M/EEG.

Wemodel theMEG response signal at sensor i (or source estimate
location) fyigt as a convolution between a kernel β (to be estimated)
and the stimulus representation signal fxjgt for the jth feature. Activity
from the data that is not captured by this model is supposed to be
Gaussian noise.

yiðtnÞ=
XNfeat

j = 1

ðβij*xjÞðtnÞ=
XNf eat

j = 1

Xτmax

τ = 1

βijðτÞxjðtn � τÞ+ ϵin ð1Þ

ŷiðtnÞ=
XNfeat

j = 1

Xτmax

τ = 1

β̂ijðτÞxjðtn � τÞ ð2Þ

Note that the hat symbol, :̂, correspond to the estimated or
reconstructed values. It is easy to rewrite equation (2) in a vec-
torized form as Ŷ= β̂X where the temporal dimension is expres-
sed as column vectors and each channel data (vector) are
concatenated along the row dimension of the matrix Ŷ. In this
formulation, X, called the design matrix in the context of linear
models, contains all the lagged time series of every feature in its
columns and time samples along its rows: X 2 RðNfeat �τmax Þ×Nsamples .
The matrix Ŷ contains the reconstructed MEG data, with the same
number of rows as X and as many columns as MEG sensors or
source estimates: Ŷ 2 RNsamples ×Nsensors . Finally, β̂ is the matrix of
estimated TRFs, with a row for each lag for each feature and as
many columns as MEG sensors or sources: β̂ 2 RðNfeat �τmaxÞ×Nsensors .
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Written in its vectorized form, we can easily see how the closed-
form formula to estimate β̂ arises:

Y=Xβ

XTY=XTXβ

β̂ = ðXTXÞ�1
XTY

ð3Þ

However, when the inversion of XTX is unstable, which easily
happens with continuous predictors, a regularised autocorrelation
matrix is used instead (via Thikonov regularisation):

w= ðXTX+ λIÞ�1
XTy ð4Þ

where λ is the regularisation parameter, and I is the identity matrix.
Wherever used, the regularisation parameter was set to λ = < λk > k, the
arithmetic mean over the eigenvalues of XTX.

All the TRF estimation and scoring was carried out using custom-
built Python code. This allowed to optimise the computation of the
TRF: in particular, we aggregate the computation of correlation
matrices across stories and leverage on the use of singular value
decomposition to compute the pseudo-inverse of the design matrix.

Model evaluation. We used Pearson’s correlation coefficient to assess
the quality of the model fit. We computed the correlation between the
predicted and the observedMEG data for eachmodel and each sensor
or source location. We then averaged the correlation across sensors to
obtain a single value for each feature set. In order to avoid overfitting,
we used a leave-one-story-out cross-validation scheme.We trained the
model on all but one story and then tested the model on the left-out
story. We repeated this procedure for each story and then averaged
the correlation across stories.

Moreover, we used mismatched feature values to compute a null
distribution of scores and coefficients (see Table 1 for a description of
eachmodel used). We then compared the observed correlation to the
null distribution to assess the significance of the model fit of a given
feature set. Thosemismatched featureswere generatedbykeeping the
same onset timings but shuffling the feature values across words. By
doing so, we are keeping the same temporal structure and statistics
within the feature set but destroying any potential relationship
between the feature and the MEG data. As an example, when we
compute the score of a given feature set, e.g. Statistical features, we
compare the observed score to the distribution of scores obtained by
fitting the model with mismatched statistical features, while keeping
other features intact. This method also has the advantage to control
for the number of features in the model thus correcting the bias in the
score, in particular, due to extra featureswhen those are not explaining
variance at a given sensor.

Inter-word phase coherence and phase-amplitude coupling
Global PAC. A first analysis for estimating phase amplitude coupling
consisted in scanning across several frequencies using a time-
frequency representation of the MEG data. We used the Morlet wave-
let transform to compute the time-frequency decomposition of the
MEG data. The Morlet wavelet transform was computed using seven
cycles between 1 and 80Hz.We extracted the average power by taking
the absolute of the complex Fourier coefficients and the phase by
normalising the complexwavelet output by its absolute value.Weused
the python package Tensorpac (version 0.6.5)95 to extract this glo-
bal standardised PAC coefficient. The library’s PAC computation also
dealt with the shuffling of amplitude segments to compute the
surrogate data.

TRF-based PAC. One challenging aspect in computing the inter-trial
phase consistency (ITPC, or inter-event phase clustering and in the

case of the present study: inter-word phase clustering) is that it relies
on the clustering of phase, evidently, across trials (defined by word
onset timings). Hence, it depends on trial-based experimental design.
We propose an innovative approach to circumvent trial design and
leverage the use of naturalistic stimuli by adapting the forward linear
model to compute an equivalent of ITPC and PAC for continuous M/
EEG recordings.

Our approach consists in using the complex analytical signal to
compute a complex-valued TRF which will jointly contain phase and
amplitude information. Computing the TRF is equivalent to finding the
kernel of the convolution, which triggers the recorded response and
thus captures and summarises the phase concentration from a con-
tinuous recording. In essence, the TRF computed from a comb-like
time-series as features is analogous to ERP analysis. We can extend this
analogy and consider this method as a way to compute ITPC and PAC
from continuous recordings.

The classic, trial-based, ITPC is computed as:

ITPCiðtÞ=
1

Ntrials

X

trials

eϕi;δ ðtÞ
�
�
�
�
�

�
�
�
�
�

While the PAC can be computed as74:

PACδ!βðtÞ=
1

Ntrials

X

trials

rβðtÞeϕi;δ ðtÞ
�
�
�
�
�

�
�
�
�
�

ð5Þ

Therefore, we can use the continuous signals eϕi;δ ðtÞ and rβðtÞeϕi;δ ðtÞ

to compute ITPC and PAC respectively, with respect to different fea-
tures. Using only word onset (a feature that is one at word onset and
zero otherwise) is equivalent to the trial-based computation of those
quantities.However, this extended frameworkallowsus to incorporate
other exogenous variables and thus analyse their respective con-
tributions to ITPC andPAC. Forte et al.96 have successfully applied such
a modelling approach on complex signals to recover phase and
amplitude response in brainstem recordings.

In order to investigate whether this method reliably recovers
features that specifically contribute to some phase-amplitude cou-
pling, we simulated the effect and recovered the dynamics of coupling
from features, beyond the event-related mean vector length. Those
simulations are presented in Fig. 6. We simulated three different sce-
narios: (A) a simple phase-amplitude coupling where the phase of low-
frequency signal modulates the amplitude of a faster signal regardless
to event timing. Then we simulated phase-amplitude coupling occur-
ring in a time-locked manner after some events. Finally, a third simu-
lation was performed where phase-amplitude coupling occurs in a
time-locked manner and the amplitude is modulated differently
depending on the values of an external feature signal. We then com-
puted theTRF for eachof those simulations and compared them to the
mean vector length computed across trials. As seen in Fig. 6, we can
recover the effect of an individual feature affecting phase-amplitude
coupling from the linear forward model.

Statistics
Power spectral densities, coherence, ITPC and power modulation
comparisons (in Fig. 2) were carried out using cluster-based permu-
tation tests97 implemented in MNE Python85. We used 1024 permuta-
tions and a threshold of p < 0.05 to determine significant clusters.

Reconstruction scores and kernel coefficients learned through
linear regression (TRFs) were tested for significance against a null
model of temporal response functions which contains control
regressor nonetheless (Base model). We constructed an empirical
estimate of the null distribution represented by a model where syn-
tactic and predictive features were unrelated to the stimulus. This is
realised by shifting the values of each feature while keeping the word-
onset timings intact. Therefore, each reconstruction score can be
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compared to the corresponding null model which matches the num-
ber of features. To assess the overall effect of model structure (Rule-
based, Statistsical or Joint) and frequency band, we ran a linear mixed
model (LMM) analysiswith the relative scoredifferencewith respect to
the Base model as a dependent variable and a random intercept per
subject (and randomslope per frequency bandwhere applicable). This
was done using statsmodels library (version 0.14.1) with the formula:
score ~ feats + fband + (1 + fband ∣ subject). We then deter-
mine the significance of fixed-effects with a likelihood ratio test with a
nested model which only account for intercepts. Finally, post-hoc
analysis on the relative score differences is done using one sampled t-
tests, comparing their value against zero. The resulting p-values were
corrected for multiple comparisons using the Benjamini-Hochberg,
controlling for the false discovery rate (FDR), implemented by MNE
Python’s fdr_correction method85.

Global PAC in Fig. 4 are computed by standardising the computed
modulation index with one obtained from surrogate data (by shuffling
amplitude segments). We then compared thos standardised
coefficient between Dutch and French condition using paired t-tests,
correcting for multiple comparisons with FDR correction after
averaging across labels with the strongest PAC within each fre-
quency band.

For TRF time-courses (PAC coefficients, in Fig. 5b, d bottom
row), we used a cluster-based permutation tests to assess significance

(against baseline mean value) and extract spatio-temporal clusters97

using MNE python’s permutation_cluster_1samp_test with 1024 permu-
tations and using the default threshold value except when indicated
in the main text. In the case of the comparison of reconstruction
scores in the source space (Fig. 3e), we used a paired t-test to compare
the scores across feature sets in a pairwise manner. The resulting
p-values were corrected formultiple comparisons with FDR correction
and used to display the significanceof the comparison in source space.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw MEG data generated in this study have been deposited in the
Radboud University Repository database and are openly available with
the identifier https://doi.org/10.34973/a65x-p00998. Processed MEG
data and Source data underlying the figures in this paper are available
in Figshare with the identifier https://doi.org/10.6084/m9.figshare.
24236512.

Code availability
The code supporting the findings of this study is available on the
GitHub repository at https://github.com/Hugo-W/feature-PAC99. All
the analysis was carried out using Python 3.12 using custom code,
heavily based on usage of the MNE-Python library (version 1.6.1)85.
Figures are done using Matplotlib (version 3.8.3) and Seaborn (ver-
sion 0.13.2).
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