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Abstract

■ Speech comprehension requires rapid online processing of a
continuous acoustic signal to extract structure and meaning.
Previous studies on sentence comprehension have found neural
correlates of the predictability of a word given its context, as well
as of the precision of such a prediction. However, they have fo-
cused on single sentences and on particular words in those sen-
tences. Moreover, they compared neural responses to words with
low and high predictability, as well as with low and high precision.
However, in speech comprehension, a listener hears many suc-
cessive words whose predictability and precision vary over a large
range. Here, we show that cortical activity in different frequency

bands tracks word surprisal in continuous natural speech and that
this tracking is modulated by precision. We obtain these results
through quantifying surprisal and precision from naturalistic
speech using a deep neural network and through relating these
speech features to EEG responses of human volunteers acquired
during auditory story comprehension. We find significant cortical
tracking of surprisal at low frequencies, including the delta band
as well as in the higher frequency beta and gamma bands, and
observe that the tracking is modulated by the precision. Our
results pave the way to further investigate the neurobiology of
natural speech comprehension. ■

INTRODUCTION

To understand spoken language, a listener must rapidly
process information that unfolds over several timescales,
including the duration of syllables at around 150 msec,
words of about 300 msec, and phrases of 1 sec (Giraud
& Poeppel, 2012). Recent studies have shown that corti-
cal activity in the delta, theta, and gamma frequency
bands tracks acoustic features of speech such as the
speech envelope as well as phonemic features (Ding
et al., 2018; Di Liberto, O’Sullivan, & Lalor, 2015; Ding
& Simon, 2014; Zion Golumbic et al., 2013; Lakatos,
Chen, O’Connell, Mills, & Schroeder, 2007). This cortical
tracking of speech features has accordingly been pro-
posed to reflect neural mechanisms of speech process-
ing, for instance, an online segmentation of speech into
acoustic speech tokens such as phonemes that occur on
the timescale of a few hundreds of milliseconds (Hyafil,
Fontolan, Kabdebon, Gutkin, & Giraud, 2015; Giraud &
Poeppel, 2012).
The processing of higher level linguistic information in

speech may employ cortical tracking as well. Recent find-
ings showed that cortical activity in the delta and theta
frequency bands synchronized to sequential cues such
as the rhythm of phrases and sentences in continuous
speech (Keitel, Gross, & Kayser, 2018; Ding, Melloni,
Zhang, Tian, & Poeppel, 2016), to hierarchical cues such
as context-free grammar structure (Brennan & Hale,

2019), as well as to the semantic dissimilarity between
successive words (Broderick, Anderson, Di Liberto,
Crosse, & Lalor, 2018).

An important property of word sequences is that they
can allow the prediction of an upcoming word, resulting
in a word expectation. The degree to which a word can
be predicted is referred to as precision and reflects the
certainty with which a neural population generates its
prediction. Predictions and precision are both closely re-
lated to putative implementations of predictive process-
ing (Heilbron & Chait, 2018; Kanai, Komura, Shipp, &
Friston, 2015; Feldman & Friston, 2010). Behavioral stud-
ies have indeed corroborated that the brain makes pre-
dictions about upcoming speech segments: Words can
be better distinguished from noise when transition prob-
abilities between words are high rather than low (Miller,
Heise, & Lichten, 1951), and a highly expected word can
be perceived as heard even when obscured by noise
(Miller & Isard, 1963).

Neurophysiological research on ERPs elicited by a
word in a sentence has shown that the brain response
to a word reflects the word expectancy through modula-
tion of the N400 response (Kutas & Hillyard, 1984).
Although this response has not been found to be fur-
ther modulated by the precision of the prediction
(Federmeier, Wlotko, De Ochoa-Dewald, & Kutas,
2007), precision can influence the neural power in the
alpha and theta bands (Rommers, Dickson, Norton,
Wlotko, & Federmeier, 2017). The power in the beta fre-
quency band has been found to be reduced by semantic1Imperial College London, 2Maastricht University
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and syntactic violations and may therefore relate to word
expectation as well (Kielar, Meltzer, Moreno, Alain, &
Bialystok, 2014; Bastiaansen, Magyari, & Hagoort, 2010;
Davidson & Indefrey, 2007). Gamma power has been ob-
served to increase when a word is highly predictable but
not when its predictability is low (Molinaro, Barraza, &
Carreiras, 2013; Wang, Zhu, & Bastiaansen, 2012).

However, these prior studies on neural correlates of
word expectancy and precision have focused on specific
words in single sentences, contrasting words with high
and low expectancy as well as with high and low precision.
But natural speech often consists of many sentences, and
the expectancy and the corresponding precision of suc-
cessive words take a range of values that do not fall in only
two classes of “high” and “low.” It therefore remains un-
clear how neural responses to word expectancy and pre-
cision correlate with this graded variability.

Furthermore, assessing the cortical responses to the
linguistic features of successive words in naturalistic
stories allows to quantify the cortical tracking of these fea-
tures. A recent investigation on word predictability and hi-
erarchical structure in naturalistic speech used such an
approach to show cortical tracking of word surprisal but
did not investigate an influence of precision and did not
investigate power modulation in higher frequency bands
(Brennan & Hale, 2019; Frank & Willems, 2017).

Here, we therefore set out to investigate cortical track-
ing, including through power modulation in higher fre-
quency bands, of word surprisal and the precision of
word prediction in naturalistic stories. The surprisal of a
word denotes the log-transformed conditional probability
of a word based on the preceding context. The surprisal
has been argued to relate to processing load (Levy, 2008)
and predicts reading time (Frank, Otten, Galli, &
Vigliocco, 2015; Smith & Levy, 2013). Precision is the in-
verse of the entropy of the conditional probability distri-
bution over a close vocabulary set. We quantified word
surprisal and precision from naturalistic stories using lan-
guage modeling as estimated by a recurrent neural net-
work and then related the obtained word features to
EEG responses of volunteers who listened to the stories.

METHODS

Participants

Thirteen participants (aged 25 ± 3 years, six women) par-
ticipated in the experiment. The volunteers were all
right-handed native English speakers. They had no his-
tory of hearing or neurological impairment. All participants
provided written informed consent. The experimental
procedures were approved by the Imperial College
Research Ethics Committee.

Experimental Design

We used naturalistic speech narratives in the participants’
native language (English). The experiment consisted of one

session in which we measured EEG responses to the short
stories Gilray’s Flower Pot and My Brother Henry by J. M.
Barrie as well as An Undergraduate’s Aunt by F. Anstey
(Patten, 1910). The stimuli were sourced from the public
domain librivox.org and were spoken by a male voice. The
corresponding text was obtained from Project Gutenberg
(www.gutenberg.org/ebooks/32846). The audio material
was presented in 15 parts, each of which were 2.6 ±
0.43 min long. The total length of the stories was 40 min.
After each part of a story, participants answered compre-
hension questions about what they just heard. These ques-
tions were presented as multiple-choice questions on a
monitor. Participants were asked 30 questions in total.

Language Modeling

We used computational linguistics methods to quantify
linguistic features in the stories. Specifically, we em-
ployed statistical language modeling to compute word
frequency, entropy, and suprisal from the text of the
stories.
Word frequency is a property of each individual word

out of context, which was computed from Google
N-grams by using only the unigram values. This word fea-
ture is an estimate of the unconditional probability of the
occurrence of a word w, P(w). We use the negative log-
arithm of this probability such that all our information-
theoretical word features are expressed in the same unit.
Both entropy and surprisal follow from conditional

probabilities of a particular word given the preceding
words. We denote by P(wm|w1, …, wm−1) the condition-
al probability of themth word in the sequence, wm, given
the previous m − 1 words w1, w2, … wm−1. Taking the
negative logarithm of this probability yields the “surpris-
al” value S(wm) for that word,

S wmð Þ ¼ − log P wm w1; …; wm−1j Þð Þð (1)

The surprisal, also referred to as self-information or in-
formation content, quantifies the information gain that
an upcoming word generates with respect to the prior
sequence of words. It can be related to how unexpected
a word is given the previous words in the sentence.
Inasmuch as surprisal informs about expected words,
precision relates to the confidence about the predictions
made (Koelsch, Vuust, & Friston, 2018). A high precision
translates into a high confidence about a word expecta-
tion, meaning that the word is predictable.
The entropy E(m) of the prediction of the mth word

wm, that is, the uncertainty for predicting the word wm

from the context (w1, …, wm−1), is given by the sum
of the conditional probabilities for each possible word
wk, weighted by the logarithm of this probability. In
other words, the entropy is the expected surprisal,

E mð Þ ¼
X

wk

p wk w1; …; wm−1j Þ log P wk w1; …wm−1j Þð �½ð

(2)
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The precision of the mth word wm follows as the inverse
of entropy 1/E(m). We note that the precision of the mth
word is not a function of that word itself but of the
probability distribution of the words at that position.
The conditional probabilities for the different words in

the sequence, given the preceding words, were com-
puted through a recurrent neural network language
model (Graves, 2013; Bengio, Ducharme, Vincent, &
Jauvin, 2003). The network had a hidden layer with recur-
rent connections to encode previous input. Such net-
works are particularly useful for processing sequences
and have previously been successfully applied to language
modeling (Graves, 2013; Bengio et al., 2003). In particular,
a recurrent neural network can capture long-term depen-
dencies, of variable length, by encoding preceding words
through its recurrent connection into the state of the hid-
den neurons. This is enabled by a careful balance between
short- and long-term memory and means that there is, in
principle, no limit on the number of preceding words that
such a network can take into account (Pascanu, Mikolov, &
Bengio, 2013). This contrasts withN-gram languagemodels,
for instance, that are limited to a context window ofN− 1
words (Brown, Desouza, Mercer, Pietra, & Lai, 1992).
The network was implemented using the feature-

augmented recurrent neural network language modeling
toolkit (Mikolov, Kombrink, Burget, Černocký, &
Khudanpur, 2011). To decrease the computational time
required for training, this toolbox assigns words to clas-
ses and factorizes the output layer into a part that de-
scribes the probability of each class given the previous
words, as well as another part that describes the proba-
bility of each word within a class given the previous
words. This factorization yields a significant decrease in
training time at a small cost to accuracy; importantly,
the network still computes the probability of individual
words following the previous words (Mikolov et al.,
2011). We employed 300 classes. As an embedding layer,
we used the pretrained global vectors for word represen-
tation trained on the Wikipedia 2014 and the Gigaword
5 data sets (Pennington, Socher, & Manning, 2014).
The recurrent layer encompassed 350 hidden units.
The source code was customized to compute the entropy
of each word, a feat that the original code did not allow.
The neural network was then trained on the text8 data set
that consists of 100 MB of data from Wikipedia (Mahoney,
2011), using back propagation through time, truncated to
five words with a starting learning rate of 0.1. The data
were cleaned to remove punctuation, html tags, capitali-
zation, and numbers before training. Because the network
can only train well on words that appear frequently
enough in the training data to allow meaningful training,
we limited the vocabulary to the 35,000 most common
words in the training data set. The remaining words were
mapped to an “unknown” token. Infrequent words in the
stories, such as compound nouns used for style, that ap-
peared repeatedly throughout the stories did therefore
not obscure the results.

The output of the recurrent neural network was ob-
tained from a softmax function and could therefore be
interpreted as the probability distribution for an upcom-
ing word given the preceding words in the input se-
quence. The network was therefore trained to predict
the next word, that is, to compute an output that was
as close as possible to a probability distribution that
was one for the actual upcoming word and zero for all
remaining ones. The trained network was then run on
the stories that the participants heard. Precision and sur-
prisal of each word were determined from the network’s
computed probability distribution at the corresponding
word through Equations (1) and (2).

Speech Features

To relate surprisal and entropy to the EEG data, we con-
structed a time series for each linguistic feature. We first
aligned each word of the speech to the acoustic signal
through forced alignment using the Prosodylab-Aligner
software (Gorman, Howell, & Wagner, 2011). We thereby
obtained the time at which each word began. To con-
struct features for surprisal and for precision that were
aligned with the speech stimuli, we assigned each of
the time points where a new word started a spike of a
magnitude that corresponded to the surprisal and preci-
sion of that word (Figure 1A). A similar procedure has
been employed recently for assessing neural responses
to the semantic dissimilarity of consecutive words
(Broderick et al., 2018).

Because surprisal and precision are high-level linguistic
features of speech, we sought to ascertain that any puta-
tive cortical tracking of them could not be explained by
lower level features. To this end, we added three low-
level speech features. First, cortical activity can track
the onset of words, which can partly be based on changes
in the acoustics at word boundaries and partly result from
the brain’s parsing of the acoustic signal to form discrete
linguistic units (Brodbeck, Presacco, & Simon, 2018;
Ding & Simon, 2014). To account for this onset response,
we constructed a word onset feature as a series of spikes,
each of which had unit amplitude and was located at the
onset of a word. Second, we computed the word position
within a sentence. The latter can be correlated with pre-
cision, as the entropy tends to decrease across words
within the sentence. The word position feature therefore
served as a control to ensure that the neural response to
precision is distinct from any incremental processing oc-
curring throughout a sentence. Third, the frequency of a
word in a given language, outside its context, is a linguis-
tic feature that acts as a prior probability for computing
the probability of a word in a sequence (Brodbeck et al.,
2018). Word frequency can also interfere with surprisal:
Less frequent words may indeed often bemore surprising.
To capture the share of the neural response that could be
explained away by word frequency, we included the latter
as a third linguistic feature. This feature was computed by
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scaling the amplitude of the spike at each word onset by
the negative logarithmof the frequency of the correspond-
ing word. The logarithm was used such that word fre-
quency and surprisal were expressed in the same units.

Finally, to investigate a possible modulating effect that
precision may have on surprisal, we added an interaction
term “Surprisal × Precision.” This was computed by
multiplying precision values with surprisal such that the
interaction feature effectively stands as a confidence-
weighted version of surprisal.

In summary, we computed five speech features: one
acoustic feature, word onset, and four linguistic features,
word position in its sentence, word frequency, precision,
and surprisal. To those, we added the interaction term be-
tween surprisal and precision. Each feature was a time se-
ries of spikes, with each spike being located at the onset
of a word. The amplitude of the spike was constant for the
word onset feature. For each other feature, it was scaled
to the corresponding value for each respective linguistic
feature. All values of the different linguistic features were
standardized to have unit variance and zero mean.

EEG Acquisition and Preprocessing

We recorded brain activity using 64 active electrodes
(actiCAP, BrainProducts) and a multichannel EEG ampli-
fier (actiCHamp, BrainProducts). The presented sound
was recorded simultaneously through an acoustic

adapter (Acoustical Stimulator Adapter and StimTrak,
BrainProducts) and was used for aligning the EEG record-
ings to the audio signals. Both the EEG and the audio data
were acquired at a sampling rate of 1 kHz. The left ear
lobe was used as a reference for the EEG.
The EEG data were processed by first applying an anti-

aliasing filter (Kaiser window, finite impulse response
[FIR] filter, cutoff −6 dB at 125 Hz, transition bandwidth
50 Hz, order 130) and by downsampling the data to
250 Hz to reduce the computation time of subsequent
operations. A high-pass filter (Hanning window, sinc
Type I linear phase FIR filter, cutoff−6 dB at 0.3 Hz, tran-
sition bandwidth 0.15 Hz, order 5168) was then applied
to every channel to remove nonstationary trends such as
slow drifts and offsets. Bad channels were identified
using the procedure clean_rawdata from the EEGLAB
plugin ASR (Artifact Subspace Reconstruction); they were
then removed and interpolated with spherical interpola-
tion. All channels were then referenced to the channel
average. We subsequently ran an independent compo-
nent analysis (ICA) decomposition and removed artifacts
from eye blink, eyes movement, as well as muscle motion
by visual inspection of the ICA components. The cleaned
data were low-pass filtered (Hamming window, linear
phase FIR filter, cutoff −6 dB at 62 Hz, transition band-
width 10 Hz, order 138) and further down-sampled to
125 Hz. The filtered EEG data therefore contained the
broad frequency range from 0.3 to 62 Hz.

Figure 1. Experimental overview. (A) We employ continuous speech narratives and utilize speech processing as well as language modeling to extract
acoustic and linguistic features, namely, word onset, word frequency, precision, and surprisal. (B) The participant’s neural activity is recorded
through EEG while they listen to the stories. (C) We extract TRFs for each of the four speech features through computing a linear model that
estimates the EEG recordings from the speech features.
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We computed temporal response functions (TRFs) from
EEG data in several frequency bands. The TRFs followed
from a linear forward model that expressed the EEG signal
at each electrode as a linear combination of the speech
features shifted by different latencies (Broderick et al.,
2018; Ding & Simon, 2012). We used FIR Type I filters,
designed with the synced windowed method, and em-
ploying a hamming window. We filtered the EEG data in
several frequency bands of interest: delta band (low-pass
filter, cutoff at 4.5 Hz, filter order 132), theta band (band-
pass filter, cutoff frequencies at 4 Hz and 8 Hz, order 206),
alpha band (band-pass filter, cutoff frequencies at 8 and
12 Hz, order 206), beta band (band-pass filter, cutoff
20 Hz and 30 Hz, order 82), and gamma band (cutoff at
30 and 60 Hz, order 164). For every frequency band other
than delta, we computed the power modulation by taking
the absolute value of the Hilbert transform of the band
passed data and further band-pass filtered it between 0.5
and 20 Hz (filter order 824) to remove the DC offset and
higher frequencies that do not occur in the speech features.

EEG Data Analysis

To relate the speech features to the EEG data, we used a
linear spatiotemporal forward model that reconstructed
the EEG recordings from the acoustic feature and the lin-
guistic features, shifted by different delays (Figure 1).
Such an approach has recently been used successfully
for assessing the cortical tracking of the speech envelope,
phonemic information, as well as semantic dissimilarity of
words in speech (Broderick et al., 2018; Di Liberto et al.,
2015; Ding & Simon, 2012). The coefficients resulting
from this regression constitute the TRFs that inform on
the brain’s response to each feature at different latencies.
In particular, the forward model sought to express the

preprocessed EEG recordings xi tnð Þf gNj¼1 of the N = 64
channels at each time instance tn through the time series

yj tn−τkð Þ� �F
j¼1 of the F = 6 speech features word onset,

word frequency, word position, word precision, word
surprisal, and the product of surprisal and entropy,
shifted by T different delays τkf gTk¼1,

‵xi tnð Þ ¼
X6

j¼1

XT

k¼1

βij τkð Þyj tn−τkð Þ (3)

We hereby considered equally spaced delays τkf gTk¼1
that ranged from −400 to 1100 msec. At the sampling
rate of 125 Hz, this yielded a number of T = 188 lags.
The obtained estimate for the EEG channel i is denoted
by ‵xi. The coefficient βij(τk) is the TRF for the ith EEG
channel and speech feature j at the latency τk. The pre-
processed EEG recording xi tnð Þf gNi¼1 was either the EEG
signal in the delta band or the power of the EEG signal in
the higher frequency bands. We computed the TRFs for
each participant separately, leading to a set of TRFs on

which we could apply group-level statistical analysis as
described below. We then also computed the population
average of the participant-specific TRFs; the population
averages are shown in the figures.

The different speech features that we employed were
partly correlated. The largest correlation emerged be-
tween surprisal and the interaction term “Surprisal ×
Precision,” at a value of .61. We wondered if these corre-
lations would hinder the EEG analysis, and in particular, if
they would obscure the neural responses to the individ-
ual speech features through the linear regression analy-
sis, an issue known as multicollinearity (Chatterjee &
Hadi, 2015; Kumar, 1975). A high multicollinearity be-
tween features could result in higher variance or leakage
between the coefficient βij(τk). However, the Frisch–
Waugh–Lovell theorem from econometrics states that lin-
ear regression based on correlated features yields the
same results as when the features are first orthogonal-
ized, that is, decorrelated (Lovell, 2008; Frisch &
Waugh, 1933). In addition, in our implementation of
the multiple linear regression, we used a singular value
decomposition of the design matrix of time-lagged fea-
tures, resulting in transformed features that were mutu-
ally uncorrelated (Klema & Laub, 1980). The correlation
of the features was therefore not problematic. The only
issue that multicolinearity can cause is significantly
increased variance for each βij(τk) estimate, which typi-
cally emerges when the variance inflation factor is above
5. For our speech features, we obtained variance inflation
factors between 1.22 and 2.25, indicating that increased
noise due to correlated features is not an issue.

As an additional control that our TRFs did not contain
leakage from responses to different features, we devel-
oped a null model that was employed to assess the sta-
tistical significance of the actual TRFs (see below). The
null model was constructed such that a potential leakage
between features would appear similarly both in the
actual model and in the null model and therefore would
not result in statistically significant results. It follows that
any statistically significant part in the TRFs that we ob-
tained did not result from leakage between the features.

Statistical Significance

To determine the statistical significance of the estimated
TRFs, we determined chance-level TRFs as a null model.
The chance-level TRFs were computed by constructing
unrelated speech features and by relating these to the
EEG recordings in the same way as for the computation
of the actual TRFs. To establish chance-level linguistic
TRFs, only the linguistic information of interest contained
in the spike amplitude of the speech features but not the
acoustic information in the spike timing needed to be un-
related to the EEG. We therefore constructed unrelated
speech features by keeping the timing of the spikes iden-
tical to those in the true model. The speech feature that
described word onsets was therefore not altered.
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However, we changed the amplitude of the spikes for the
other linguistic speech features by taking their values
from an unrelated story, that is, a story that was not
aligned with the EEG data. To obtain a large number of
null models, we considered permutations of our 15 story
parts. Through permutating entire story parts and not the
order of individual words, the statistical relationship be-
tween the linguistic features of successive words was con-
served. Because we kept the timing of the spikes in the
null model as in the actual stories, the obtained null
model could only be used to determine the significance
of the neural responses to the linguistic features, but not
for those to the acoustic word onset.

The actual TRFs were then analyzed for statistical signif-
icance through comparison to 1000 null models. The com-
parison was obtained from a permutation test together
with cluster-based correction for multiple comparison
(Oostenveld, Fries, Maris, & Schoffelen, 2011), where only
clusters of at least four electrodes were kept. Specifically,
we used the function spatio_temporal_cluster_test from
the MNE python library. The statistic for each model coef-
ficient, at each electrode and each lag, was computed using
the empirical distribution formed by values from the null
models, setting the threshold at the 99th percentile of the
null distribution. The cluster-level p values were computed,
and we considered only clusters with a p value greater than
.05/10.WeherebyusedtheBonferronicorrectiontoaccount
for the 10 different tests that reflected the different fre-
quency bands and the different linguistic features.

Data Availability

The EEG data from all participants, together with the cor-
responding speech features, are available on figshare.
com (https://doi.org/10.6084/m9.figshare.9033983.v1).
An exemplary script for computing TRFs can be obtained
from figshare as well (https://doi.org/10.6084/m9.
figshare.9034481.v1).

RESULTS

Behavioral Assessment

We first assessed to what degree the participants under-
stood the stories through asking them comprehension
questions. These questions were answered with an aver-
age of 96% accuracy, evidencing that the volunteers con-
sistently understood the speech and paid attention.

Cortical Tracking of Acoustic and Linguistic
Speech Features

The cortical tracking of the speech features can be found
in different frequency bands. First, because all four fea-
tures relate to words, the frequency range of the features
is similar to the rate of words in speech. The latter is
about 1–4 Hz and corresponds to the delta frequency

range. Cortical activity at low frequencies, including the
delta frequency band, can therefore be evoked by or
entrain to the rhythm set by the acoustic and linguistic
word features. Second, the amplitude of the neural activ-
ity in higher frequency bands can be modulated by the
speech features. This may, in particular, occur for the
theta band (4–8 Hz), the alpha band (8–12 Hz), the beta
frequency band (20–30 Hz), and the gamma frequency
band (30–100 Hz), the power of which can be modulated
by prediction in sentence comprehension (Wang et al.,
2012; Weiss & Mueller, 2012; Bastiaansen et al., 2010;
Bastiaansen & Hagoort, 2006).
We started by quantifying the neural tracking of the

word features at low frequencies. We found neural re-
sponses to word frequency between delays of 300 and
610 msec (Figure 2). The topographic plots of the re-
sponses show large differences between the temporal
scalp areas on the one hand and the parietal and occipital
areas on the other hand.
Importantly, we found significant responses to the

word surprisal around a delay of 450 msec (Figure 2).
These responses emerged predominantly in the EEG
channels on the temporal and occipital scalp areas and
were lateralized on the left hemisphere. Precision was
tracked by cortical activity at delays of around 100 msec
and around 500 msec. Moreover, we observed a signifi-
cant neural response to the interaction of surprisal and
precision, at an earlier latency of around 400 msec and
at a longer latency of around 1000 msec.
We also computed the modulation of the power in the

theta band, the alpha band, the beta band, as well as the
gamma band by the acoustic and linguistic features
(Figures 4 and 5). Although the power in the alpha band
was not significantly related to the linguistic features, the
power in the theta band was shaped by word frequency
at delays of around 300 msec and around 1000 msec
(Figure 3). Furthermore, the power in the theta band
was significantly decreased by precision at delays of
about 700 msec.
The power in the beta band correlated positively with

surprisal at delays of around 700 and 1000 msec (Figure 4).
At the latter delay, the influence of surprisal was strongest
at the left temporal channels. Moreover, the power in the
beta band was modulated by precision at a delay of about
700 msec, with the main contributions coming from the
occipital channels.
The power in the gamma band was increased by words

with higher surprisal at long latency of around 1000 msec,
mainly for the left temporal channels (Figure 5). The in-
teraction of surprisal and precision shaped the gamma
power as well, at the early delay of about 0 msec.

DISCUSSION

We have shown that cortical activity tracks the surprisal of
words in speech comprehension. Such cortical tracking
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has emerged at low frequencies, that is, within the delta
band that encompasses a similar frequency range as the
rate of words in speech. Importantly, we found that the
neural activity in the faster theta, beta, and gamma fre-
quency bands tracks surprisal as well. These frequency
bands have previously been suggested to be involved in
the bottom–up and top–down propagation of predic-
tions and prediction errors (Lewis & Bastiaansen, 2015).
We have further demonstrated that the cortical track-

ing of word surprisal is modulated by precision: The
interaction between surprisal and precision leads to

responses both in the slow delta band as well as in the
power of the faster gamma band. In particular, word pre-
dictions that are made with high precision but then lead
to large surprisal cause an increased gamma power at
zero lag. However, as opposed to a previous study on
ERPs, we did not observe a significant effect in the theta
or alpha bands (Rommers et al., 2017). This difference
may be due to our use of naturalistic stimuli and the inclu-
sion of all words in the analysis, whereas the previous study
used specialized sentences with final words that had either
high or low surprisal and either high or low precision.

Figure 2. TRFs for acoustic
and linguistic speech features.
The TRFs for each electrode are
shown in bold at time instances
where they are significant
compared with a null model
that is based on shuffled data.
EEG channels that yield a
significant response within
a particular range of delays,
highlighted in gray, are
indicated in white in the
topographic plots. (A) The
responses to the word onset
appear as insignificant due to
the construction of the null
model. (B, C) We obtain
significant neural responses
to word frequency as well as
surprisal for delays around
400 msec (D) Significant neural
responses to precision arise
around delays of 100 msec as
well as around 500 msec.
(E) The interaction between
surprisal and precision leads to
a neural response at a delay of
400 msec as well as at a long
delay of 1000 msec.
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The cortical tracking of surprisal may indicate predic-
tive processing by the brain. Predictive processing is a
framework for perception in which it is assumed that
the brain infers hypotheses about a sensory input by gen-
erating predictions of its neural representations and that
the hypotheses are constantly updated as new sensory
information becomes available (Kanai et al., 2015;
Bendixen, SanMiguel, & Schröger, 2012; Friston, 2010;
Friston & Kiebel, 2009). In particular, the surprisal of a
word reflects a prediction error, a key quantity in the
framework of predictive coding (Friston, 2010). However,
the expectancy of a word based on previous words also

correlates with the plausibility of a word in a particular con-
text (Nieuwland et al., 2019; DeLong, Quante, & Kutas,
2014). Further studies are therefore required to disentan-
gle neural correlates of actual word prediction from those
that do not require predictive processing, such as word
plausibility.
The surprisal of a word can reflect both its semantic as

well as syntactic information, and previous investigations
into the neurobiological mechanisms of language
comprehension have manipulated both independently
(Henderson, Choi, Lowder, & Ferreira, 2016; Humphries,
Binder, Medler, & Liebenthal, 2006). In contrast, our

Figure 3. Neural responses
in the theta frequency band. (A)
Word frequency is positively
correlated to theta power at a
delay of 300 msec and is
negatively correlated at a delay
of 1000 msec. (B) Words that
can be predicted with higher
precision lead to an increased
theta power at 150 msec and a
decreased theta power at a
latency of 700 msec.

Figure 4. Neural responses in
the beta frequency band. (A)
There are significant neural
responses to surprisal,
emerging at delays of 700 and
1000 msec. (B) Precision causes
an increased power in the beta
band activity around a delay of
700 msec.
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approach has taken a naturalistic and holistic approach to
surprisal; we employed natural speech without manipula-
tions combined with statistical learning of a rich variety
of natural language cues through a recurrent neural net-
work. Because the neural network infers both syntactic
rules as well as semantic information from the training of
the speech material, the reported neural response to word
surprisal can reflect both semantic as well as syntactic infor-
mation (Collobert et al., 2011).
It is instructive to compare the reported neural re-

sponses to surprisal to the well-characterized event-
related responses that can be elicited by violations of
semantics, syntax, or morphology in sentences. In partic-
ular, semantic violations can cause the N400 response, a
negativity at 200–500 msec at the central and parietal
scalp area (Kutas & Federmeier, 2011; Kutas & Hillyard,
1980). Syntactic anomalies due to ungrammaticality or
temporary misanalysis elicit the P600, a broad positive
potential that is located at the posterior scalp area and
arises around 600 msec after the anomaly (Hagoort
& Brown, 2000; Friederici, Pfeifer, & Hahne, 1993).
More specific syntactic anomalies can lead to negative
potentials that occur anteriorly and that can be left later-
alized, either occurring at 300–500 msec ((L)AN) or
earlier, at 125–150 msec (ELAN; Steinhauer & Drury,
2012; Friederici, 2002; Van Den Brink, Brown, &
Hagoort, 2001; Rösler, Pechmann, Streb, Röder, &
Hennighausen, 1998).
These ERPs do presumably not reflect the activation of

single static neural sources, but rather waves of neural
activity that propagate in time across different brain
areas (Kutas & Federmeier, 2011; Tse et al., 2007; Maess,
Herrmann, Hahne, Nakamura, & Friederici, 2006). In the
case of the N400, for instance, this wave of activity starts
at about 250 msec in the left superior temporal gyrus

and then propagates to the left temporal lobe by 365 msec
as well as to both frontal lobes by 500 msec (Van Petten &
Luka, 2006; Halgren et al., 2002; Helenius, Salmelin,
Service, & Connolly, 1998). A recent theory suggests that
this wave of activity reflects reverberating activity within
the inferior, middle, and superior temporal gyri that
corresponds to the activation of lexical information,
the formation of context and the unification of an up-
coming word with the context (Baggio & Hagoort, 2011).

The spatiotemporal characteristics of the responses to
surprisal that we have measured here share certain sim-
ilarities with these ERPs. In particular, we have found
neural responses to surprisal at latencies between 300
and 600 msec. These responses show a central-parietal
negativity that is reminiscent of the N400. However,
other features of the neural responses that we describe
here appear distinct from these ERPs. The neural re-
sponse to surprisal in the delta band at the latency of
600 msec does, for instance, not display the posterior
positivity of the P600. Moreover, we have identified late
responses around 700 and 1000 msec. We have also
shown that neural responses to surprisal arise in various
frequency bands, beyond the delta band that matters for
the ERPs. However, a further comparison of the neural
response to surprisal to the related ERPs is hindered by
the lack of spatial resolution offered by EEG recordings.
Future neuroimaging studies using intracranial record-
ings or magnetoencephalography (MEG) may localize
the sources of the neural response to surprisal that
we have measured here and quantify potential shared
sources with the ERPs.

The difference of the cortical tracking of surprisal to
the well-known neural correlates of semantic, syntactic,
or morphological anomalies and, in particular, the late re-
sponses at a delay of around 1 sec may come as a result

Figure 5. Tracking of surprisal
by gamma band activity. (A) The
gamma activity is decreased at
around 1000 msec, mostly in
the left temporal and frontal
scalp areas. (B) The interaction
between precision and surprisal
leads to a modulation of the
gamma power at the latency of
around 0 msec. This modulation
occurs predominantly for left
temporal and frontal channels
as well.
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of our use of natural speech that differs from the artifi-
cially constructed and tightly controlled stimuli used to
measure ERPs. First, in our experiment, the participants en-
countered no violations of semantics, syntax, and morphol-
ogy but instead heard naturalistic speech, within which the
words occurred in context. Second, our stimuli did not con-
tain artificial manipulations of word surprisal or precision.
Instead of altering the stimuli, we focused on quantifying
surprisal and precision as they varied naturally in the pre-
sented stories. Third, we assessed the responses to surprisal
and precision at each word in the story and hence for words
in every sentence position, rather than for words at a partic-
ular position within each sentence. Because we accounted
for word position through a corresponding control feature,
we avoided the possibility of sentence position having an
effect on the results (Bastiaansen et al., 2010). Fourth,
we did not employ isolated sentences but continuous
stories so that information of integration occurred over
timescales exceeding a few seconds.

Although our EEG recordings showed the cortical
tracking of surprisal in different frequency bands, they
did not allow us to precisely localize the sources of the
activity in the cortex. Pairing EEG with fMRI or employing
MEG may allow to add spatial information to the tempo-
ral tracking that we have assessed here. A recent fMRI
study, for instance, found that the left inferior temporal
sulcus, the bilateral posterior superior temporal gyri, and
the right amygdala responded to surprisal during natural
language comprehension, whereas the left ventral pre-
motor cortex and the left inferior parietal lobule re-
sponded to entropy (Willems, Frank, Nijhof, Hagoort,
& van den Bosch, 2015). Another recent MEG measure-
ment of the brain’s natural speech processing found that
entropy and surprisal play a role in the assembly of pho-
nemes into words and involve brain areas such as core
auditory cortex and the STS (Brodbeck et al., 2018).
Combining the temporal precision of EEG with the spa-
tial precision of fMRI or harnessing the ability of MEG to
locate neural sources temporally and spatially will allow
to further clarify the spatiotemporal mechanisms of nat-
ural language comprehension in the brain.

In summary, we showed that neural responses to word
surprisal can be measured from EEG responses to natu-
ralistic stories. Our results demonstrate that both the
slow delta band as well as the power in higher frequency
bands, in particular the beta and gamma bands, are
shaped by surprisal. Moreover, we also showed that the
neural response to surprisal is modulated by the preci-
sion of a prediction. In particular, predictions made with
high precision, which lead to high surprisal modulate
gamma power in the left temporal and frontal scalp areas.
In addition, we also demonstrated that neural activity in
the delta, theta, and beta frequency bands is shaped by
the precision of word prediction directly. These re-
sponses arise at different latencies and at different scalp
areas, suggesting a rich spatiotemporal dynamics of neu-
ral activity related to word prediction.
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